
Scala

Overview
Short introduction / basic syntax
●  If / else / for
●  expressions
●  closures / function literals
●  Pattern matching

Object Oriented Programming
●  Classes / inheritance / encapsulation
●  Traits and interfaces
●  Nested classes

Functional Programming
●  Higher order functions
●  Collections

Things I didn’t talk about
Additional resources

What is Scala?

● Statically typed, modern programming
language for the JVM
● Seamless integration with Java libraries

Who’s using Scala

● Twitter
● Airbnb
● LinkedIn
● Netflix
● Tumblr
● The Guardian
● Sony

● (check out Twitter and Netflix on GitHub)

Short Intro / basic syntax

Variables and expressions

Functions

Functions as values

Operators

In Scala operators are regular method calls

Pattern matching

Object Oriented
Programming

Classes

Objects

Traits: As an interface

Traits: As an interface with a default
implementation (mixin)

Pattern matching on traits

Case Classes

Case Classes

Functional Programming

Higher Order Functions

Functions that
● take other functions as parameters -or-
● returns another function as a return value -

or-
● both

Use cases ...

Higher Order Function

Use Case: Simplifying the usage of locks

Already exists in Scala, and is part of every object.
It’s called `synchronized`.

Lists

0 or 1 items !

Transformations

`for` compiles to a bunch of
map()
flatMap()
withFilter() // similar to filter

`for` doesn’t care about the implementation!

Transformations

Alternative

Task: Find every line in a Wikipedia article that contains the word
“ship”, calculate it’s length, and compute the sum of the lengths.

Transformations: Distributed
version

From previous slide:

Time of iteration 1 (ms): 95360
Time of iteration 2 (ms): 2308
Time of iteration 3 (ms): 2177
Time of iteration 4 (ms): 2167

Futures

● Placeholder for a value that will be available
at some point in the future (or an exception
in the case of failure)

● Lets you register callbacks and perform

transformations on the future value

● Many different implementations

Futures (com.twitter.util.Future)

Futures (com.twitter.util.Future)

Questions

