
INF-2202 (Fall 2015) 

ASSIGNMENT #2 
Deduplication 
 
Ibrahim Umar & Lars Ailo Bongo 

 
17.09.2015 



Overview 
•  Your task is to implement a deduplication sender or receiver using 

Go language. 

•  Deduplication is a global compression technique often used by 
backup systems.  
–  Achieves very high compression ratio by identifying redundancy 

over the entire dataset instead of just a local window 
–  Both sides maintain a big cache of previously sent data 
–  For redundant data, a short fingerprint is sent instead of the data 

content 
–  Deduplication systems need to support high throughput 

•  Deadline: Monday, 12.10.2015 (end of day) 



Deduplication (sender) 

Mandatory)assignment)2)–)infm 2202)–)Fall)
2015)

Lars%Ailo%Bongo%%(larsab@cs.uit.no)%
Ibrahim Umar (ibrahim.umar@uit.no)

Department%of%Computer%Science,%University%of%Tromsø.%

Last%updated:%17.09.2015.%

Introduction)
In%this%mandatory%assignment%you%will%implement%a%deduplication%sender%and%receiver%using%Go.%
Deduplication%is%a%global%compression%technique%that%is%often%used%by%backup%systems.%It%achieves%very%
high%compression%ratio%by%identifying%redundancy%over%the%entire%dataset%instead%of%just%a%local%window.%
Both%sides%maintain%a%big%cache%of%previously%sent%data,%and%for%redundant%data%a%short%fingerprint%is%
sent%instead%of%the%data%content.%Deduplication%systems%need%to%support%high%throughput.%

Deduplication)

Figure'1:'Sender'side.'

The%sender%should%do%the%following%to%compress%an%input%datastream%(Figure%1):%

1. Split%the%input%data%into%chunks.
2. Calculate%a%SHAR1%fingerprint%for%each%chunk.
3. Check%if%the%cache%contains%a%chunk%with%the%calculated%fingerprint.
4. If%an%entry%was%found,%the%chunk%has%been%sent%earlier%and%hence%the%chunk%is%also%cached%at%the

receiver%side.%Only%the%fingerprint%is%therefore%sent.
5. If%an%entry%was%not%found,%the%chunk%has%not%been%sent%earlier.%It%is%therefore%compressed%using

for%example%gzip,%the%compressed%data%is%written%to%the%cache,%and%the%fingerprint%and
compressed%data%are%sent%to%the%receiver.



Deduplication (receiver) 

Figure'2:'Receiver'side.'

If%the%receiver%received%a%fingerprint%from%the%sender%it%does%the%following:%

1. Read%the%compressed%chunk%data%from%the%cache,%using%the%fingerprint%as%index.
2. Decompress%the%chunk%data.
3. Write%the%chunk%data%to%the%output%datastream

If%the%receiver%received%a%fingerprint%and%compressed%chunk%data%it%does%the%following:%

1. Write%the%compressed%data%to%the%cache%using%the%fingerprint%as%index.
2. Decompress%the%chunk%data.
3. Write%the%chunk%data%to%the%output%datastream.

Input)data)
You will get access to 14 versions of the UniProt database. These are available on:%

ifilab102.stud.cs.uit.no:/data/inf2202
(note: use sftp or scp to access the files and do not run your code on ifilab102)

Note%that%sprot%file%is%about%2.3GB,%and%that%the%Trembl%files%range%in%size%from%30GB%to%47GB.%You%
therefore%need%to%make%a%model%for%how%you%will%access%the%data%and%how%much%time%this%will%take.%This%
model%should%take%into%account%the%dataset%size,%network%bandwidth,%and%other%students.%%

You%may%use%an%alternative%dataset,%or%a%synthetic%dataset.%If%so,%you%report%must%discuss%workload%
selection%and%workload%properties.%

Chunking)
The%UniProt%data%is%structured%into%records.%We%will%provide%you%with%code%that%you%can%use%to%split%the%
file%into%these%records.%



Test Data 
•  You will get access to 14 versions of the UniProt database. These are 

available on:  
ifilab102.stud.cs.uit.no:/data/inf2202 
 (note: use sftp or scp to access the files and do not run your code on 
 ifilab102) 

 
•  You need to make a model for how you will access the data and how 

much time this will take.  

•  This model should take into account the dataset size, network 
bandwidth, and other students. 

•  You may use an alternative dataset, or a synthetic dataset. If so, your 
report must discuss the workload selection and workload properties. 



What do you need to implement? 
1.   Chunking 

–  Code to make chunks out of the data is provided as “parser.go” 
2.   Fingerprints 

–  The fingerprints should be 160-bit SHA-1 hashes. 
3.   Cache 

–  We assume that the cache can hold all non-redundant chunks 
and that it fits in DRAM. However, the actual size of the cache 
may be too large for the computers you have available. If that is 
the case you must simulate a cache. 

4.   Local compression 
–  You should compress the data before sending over the network 

using a local compression algorithm (see http://golang.org/pkg/
compress/). 



What do you need to implement? 
(2) 
5.   Protocol 

–  You need to design a protocol for sender-receiver 
communication. The protocol may send chunks out of order, but 
it is expected that the input datastream and output datastream 
are identical. 

6.   Compression engine 
–  You should implement a concurrent compression engine using 

Go. Please use available libraries. 
7.   Evaluation 

–  You should do a performance evaluation of your system. To do 
this you must set goals, select metrics, instrument the code, 
design the experiments, and report the results. 



Requirements 
1.  Create a model for accessing the dataset. 
2.  Model, design, and either implement or simulate the chunk cache. 

3.  Implement deduplication using SHA-1 fingerprints and local 
compression. 

4.  Design a protocol for sending fingerpints and chunk data. 

5.  Implement a concurrent compression engine in Go. 

6.  Conduct a performance evaluation of your system. 

7.  Write a report that discuss your models, design, simulation (if any), 
implementation, experiment methodology, and experiment results 



GitHub workflow 
1.  Fork the assignment repository using GitHub 

2.  Create a directory in the forked repo using your UIT userID as the name 
(`<root>/abc123`) 

3.  Code(s) should be placed under `<root>/abc123/codes` while report is 
inside `<root>/abc123/report` 

4.  Work your solution and report using the forked private repo (but please 
do not make the forked repo public) 

5.  I will pull all of your repos at 23.59 on 12.10.2015 (no need to make a pull 
request) 



Grading 
•  Based on your submitted code and report, a PASS or FAIL grade will 

be given 

•  Therefore, be sure to adhere to the previously described 
requirements! 



Disclaimer 
•  Please do not publicize or share your solution or codes anywhere 

without our permission 

•  Please refrain yourself to copy other students code(s).  

•  On the contrary, group discussions and brainstorming for ideas are 
strongly encouraged 


